Developing transgenic Arabidopsis plants to be metal-specific bioindicators.

نویسندگان

  • Beth A Krizek
  • Valerie Prost
  • Ratan Mani Joshi
  • Terry Stoming
  • Travis C Glenn
چکیده

Deoxyribonucleic acid (DNA) microarrays provide a means to assess genome-wide expression patterns after exposure of an organism to different xenobiotics. Potential uses for this technology include identification of unknown toxicants, assessment of toxicity of new compounds, and characterization of the cellular mechanisms of toxicant action. Here we describe another use of DNA microarrays in toxicant-specific gene discovery. Combining results from two DNA microarray experiments, we have identified genes from the model plant Arabidopsis thaliana that are induced in response to one but not other heavy metals. The promoters of these genes should be useful in developing metal-specific transgenic biomonitors. To test this idea, we have fused the promoter of one of the newly identified Ni-inducible genes (AHB1) to the beta-glucuronidase (GUS) reporter gene. Arabidopsis plants containing the AHBI::GUS transgene show reporter gene activity when they are grown on media containing Ni but not when grown on media containing Cd, Cu, Zn, or without added metals. Thus, this approach has resulted in the creation of a transgenic strain of Arabidopsis that can report on the presence and concentration of Ni in plant growth media. Such transgenic models can serve as cheap and efficient biomonitors of bioavailable heavy metal contamination in soils and sediments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved salt tolerance in canola (Brasica napus) plants by overexpression of Arabidopsis Na+/H+ antiporter gene AtNHX1

A significant portion of the world’s cultivated land is affected by salinity that reduces crop productivity in these areas. Breeding for salt tolerance is one of the important strategies to overcome this problem. Recently, genetic engineering is becoming a promising approach to improving salt tolerance. In order to improve the yield performance of canola in saline soils, we transformed canola w...

متن کامل

Functional Assessment of an Overexpressed Arabidopsis Purple Acid Phosphatase Gene (Atpap26) in Tobacco Plants

Background: Overexpression of known genes encoding key phosphate (Pi)-metabolizing enzymes, such as acid phosphatases (APases), is presumed to help plants with Pi availability and absorption as they are mostly exposed to suboptimal environmental conditions for this vital element.Objectives: In this study, the overexpression effect of AtPAP26, one of the m...

متن کامل

Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals.

Large parts of agricultural soil are contaminated with lead (Pb) and cadmium (Cd). Although most environments are not heavily contaminated, the low levels observed nonetheless pose a high risk of heavy metal accumulation in the food chain. Therefore, approaches to develop plants with reduced heavy metal uptake are important. Recently, many transgenic plants with increased heavy metal resistance...

متن کامل

Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants.

Nicotianamine, a plant-derived chelator of metals, is produced by the trimerization of S-adenosylmethionine catalyzed by nicotianamine synthase. We established transgenic Arabidopsis and tobacco plants that constitutively overexpress the barley nicotianamine synthase gene. Nicotianamine synthase overexpression resulted in increased biosynthesis of nicotianamine in transgenic plants, which confe...

متن کامل

Overexpression of ZmIRT1 and ZmZIP3 Enhances Iron and Zinc Accumulation in Transgenic Arabidopsis

Iron and zinc are important micronutrients for both the growth and nutrient availability of crop plants, and their absorption is tightly controlled by a metal uptake system. Zinc-regulated transporters, iron-regulated transporter-like proteins (ZIP), is considered an essential metal transporter for the acquisition of Fe and Zn in graminaceous plants. Several ZIPs have been identified in maize, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental toxicology and chemistry

دوره 22 1  شماره 

صفحات  -

تاریخ انتشار 2003